Abstract
Nonradiating current configurations attract attention of physicists for many years as possible models of stable atoms. One intriguing example of such a nonradiating source is known as ‘anapole’. An anapole mode can be viewed as a composition of electric and toroidal dipole moments, resulting in destructive interference of the radiation fields due to similarity of their farfield scattering patterns. Here we demonstrate experimentally that dielectric nanoparticles can exhibit a radiationless anapole mode in visible. We achieve the spectral overlap of the toroidal and electric dipole modes through a geometry tuning, and observe a highly pronounced dip in the farfield scattering accompanied by the specific nearfield distribution associated with the anapole mode. The anapole physics provides a unique playground for the study of electromagnetic properties of nontrivial excitations of complex fields, reciprocity violation and Aharonov–Bohm like phenomena at optical frequencies.
Introduction
The possible existence of nonradiating sources has puzzled physicists since the early days of electromagnetic theory, particularly in connection with models of stable atoms and electrons configurations^{1,2,3}. The term ‘anapole’ (that means ‘without poles’ in Greek) was introduced in the physics of elementary particles by Yakov Zel’dovich^{4}. Recently, an anapole was suggested as a classical model of elementary particles describing dark matter in the Universe^{5}. The electrodynamics analogue of the anapole is a composition of electric and toroid dipole moments, without farfield radiation due to complete destructive interference of their similar radiation patterns^{6}. The toroidal modes and an analogue dynamic anapoles have been demonstrated in the microwave part of the spectrum^{7}, toroidal resonances were also seen at optical frequencies^{8}. The classical analogue of a stationary anapole is the wellknown toroid with a constant poloidal surface current^{4}. This current distribution is also associated with a toroidal dipole moment pointing outward along the torus symmetry axis (see Fig. 1). The static magnetic field produced by a toroid is entirely concentrated within a coil in the form of a circulating magnetic current (see Fig. 1). It generates no field outside, but may possess a nonzero potential, which might lead to violation of the reciprocity theorem and Aharonov–Bohm like phenomena^{9,10}.
In general, the existence of toroidal multipoles is required by the symmetry of the order parameters with respect to the inversions of space and time: in addition to the wellknown electric polarization (described by an rodd and teven polar vector) and magnetization (reven and todd axial vector), there should be the order parameters described by an r and teven polar vector and an r and todd axial vector^{11}. The latter two correspond to the toroidal ordering and have been observed in natural crystals (see, for example, ref. 12, for a recent review) as well as in artificial metamaterials^{13}. A radiationless nuclear anapole moment has been observed in atomic Cesium^{14} through atomic parityviolating effects, which were first suggested in ref. 15. In the Standard Electroweak theory, nuclear anapole moments arise due to parityviolating forces inside the nucleus. However, the interactions of nucleons with a static ‘cosmic’ field and an axion dark matter field can also give rise to static and oscillating nuclear anapole moments, respectively, (see for example, refs 16, 17).
In the dynamic case, an oscillating toroidal dipole moment produces nonzero electromagnetic radiation with a pattern fully repeating that of an electric dipole moment but being scaled by a factor ω^{2}, where ω is the angular frequency of light (see Fig. 1). For the oscillating surface current, its radiationless properties can be realized by exciting a second electric dipole oscillating outofphase with the toroid, resulting in complete destructive interference of their radiation due to equivalence of their scattering patterns. Such a radiationless nontrivial oscillating current configuration was (in analogy with nonoscillating poloidal current) also named ‘anapole’^{6}. However, this type of the radiation compensation, in general, is not complete for an external excitation: the compensated toroidal dipole moment is a part of the thirdorder source current multipole expansion. Other terms of the same order (magnetic quadrupole and electric octupole) can remain radiative. Nontrivial nonradiative current configurations have attracted continuous interest since the early days of electrodynamics; from the fundamental physics to applications of nonscattering objects^{18,19}. Since ideal nonscattering objects do not exist^{20}, by ‘radiationless’ we refer to a compensation or absence due to structural peculiarities of the leading multipole order; below we term the respective combination as the ‘anapole mode’.
The concept of toroidal modes have attracted considerable attention in the field of metamaterials as a possible realization of radiationless objects^{7,21,22,23,24,25}. The toroidal moment itself and its associated effects (including toroidal metamaterials^{13,25}) have been recently studied theoretically^{8,22,23,26,27,28,29}. Several experimental verifications in microwave^{7,13,21} and optical^{30} domains for toroidal moments have confirmed the proposed theory. Moreover, the mutual compensation of the toroidal and dipole moments has been experimentally observed in GHz frequency region with a specially designed structure^{7}.
Here we demonstrate experimentally, for the first time to our knowledge, the existence of an anapole mode in optics in the simple structure of a silicon nanodisk. We observe a strong suppression of the farfield scattering along with nontrivial evolution of the electromagnetic field inside a nanodisk close to the wavelength of the anapole mode excitation. Very recently, excitation of a toroidal moment at THz frequencies has been theoretically predicted for quadrumers of dielectric cylinders made of LiTaO3 (ref. 8).
Results
To analyze the electromagnetic properties of the silicon nanoparticle theoretically and to demonstrate the anapole excitation in the system, we employ multipole expansions in the two representations: for fields outside the nanoparticle in the spherical multipoles^{31} and in the Cartesian for currents inside the nanoparticle; each series can be unambiguously expressed one through the other^{30}. For the sake of generality, we assume a nontrivial current distribution J(r, t) producing an electromagnetic field E(r, t).
We employ the field multipole expansion, which, due to orthogonally of vector spherical harmonics, allows us to unambiguously study the radiation properties by representing the total scattering crosssection as a sum of intensities of spherical electric a_{E}(l, m) and magnetic a_{M}(l, m) scattering coefficients^{32}:
where the scattering coefficients
can be calculated directly through the induced currents inside the structure^{31}. The coefficients a_{E}(l, m) and a_{M}(l, m) are called field spherical multipole coefficients^{32} (see also Supplementary Methods).
At the same time, the source current distribution can be expanded over current Cartesian multipole coefficients^{26,33,34}:
Here is a tensor of rank l. We would like to note that the structure and interpretation of these coefficients requires a special care. In particular, from these tensors, various current Cartesian multipoles can be obtained. For example, determines the electric dipole moment , consists of electric quadrupole (symmetric) and magnetic dipole (antisymmetric) moments, and gives rise to electric octupole , magnetic quadrupole , and toroidal dipole moments . Note that the toroidal dipole moment of the current appears in the thirdorder expansion coefficients^{33}, in contrast to the field expansion, and is associated with a particular current configurations. Field expansion and respective field spherical multipole coefficients a_{E}(l, m) and a_{M}(l, m) are not associated with a particular current, but rather with the scattered field structure. For example, in the far field, the dipole and toroidal dipole radiation patterns are indistinguishable and cannot be recognized in the frame of the field spherical multipole expansion. From the other perspective, current Cartesian multipole expansion allows us to unambiguously separate the dipole and toroidal dipole contributions, and, hence, provides with a tool necessary for the required structure design. The current expansion can also be performed over any full orthogonal basis, for example over vector spherical harmonics^{9}, where the contribution of the toroidal moments and corresponding current configurations can be uniquely identified.
We start our analysis from a simple observation of some peculiar properties of light scattering by spherical dielectric particles. In the Mie theory, the transverse boundary conditions can be written independently for each multipole order as ref. 35
where x=2πR/λ is the size parameter, n is the relative refractive index of the particle, and are Riccati–Bessel functions and d_{E}(l, 1) are the internal coefficients of electric multipole excitation inside the spherical particle^{31}. In the limit of a transparent particle (n→1), all the scattering coefficients vanish a_{E}(l, 1)=0 and the amplitude of the internal coefficients tend to unity, d_{E}(l, 1)=1. This is a trivial case of a nonscattering particle without induced polarization inside. In the nontrivial case with n>1, in general, there are conditions when a_{E}(l, 1)=0 and d_{E}(l, 1)>1, corresponding to the situations with nonzero induced polarization inside the particle and, at the same time, zero scattering of a particular multipolar order. This condition exhibits the existence of nonradiative sources in the simplest spherical geometry. Since, for each multipole there exist an infinite number of such conditions, they provide a recipe to create a variety of nonradiative current configurations. In Fig. 2a we show the dependence of electric dipole scattering a_{E}(1, 1) and internal d_{E}(1, 1) coefficients of a dielectric spherical particle as a function of diameter for refractive index n=4 and wavelength 550 nm, which demonstrates the situation of a vanishing scattering coefficient a_{E}(1, 1)=0 associated with the nonzero induced field. At the same time, in Fig. 2b we present the partial scattering contribution of the electric dipole C_{sca}∝a_{E}(1, 1)^{2} together with the corresponding electric energy integrated over the spherical volume normalized to the trivial case of a transparent particle W_{in}=2πR^{3}E_{0}^{2}/3. It again demonstrates that at the condition of zero scattering the energy density is nonzero and larger than in trivial case—it means that the energy is concentrated inside the particle.
To analyse the excitation of the anapole mode in more details, we consider the properties of a singlespherical electric dipole. In this case, the response of the electric dipole mode can be also described in terms of effective dipole moments. The contribution to the farfield scattering with the electric dipole symmetry can be written as
where n is the normalized vector of observation direction and the effective electric dipole moment is defined through the corresponding Mie scattering coefficient. This is a description of the radiation properties of an electric dipole by using a field spherical multipole coefficient.
However, electric dipole moments inside the particle can be obtained via integrating the induced current over the whole volume
with
This is a description of the electric dipole moments inside the particle by using the current Cartesian multipoles. In Fig. 2c we plot the dependence of both electric dipole moments for a dielectric sphere versus diameter, where only the electric field of the spherical electric dipole inside the particle was taken into account. This figure demonstrates that for small particle sizes both approaches produce similar results. For larger particles, the two descriptions deviate from each other quite strongly. In particular, there is a situation for the diameter ∼204 nm, when the electric dipole scattering vanishes, P_{sph}=0, while the induced electric dipole inside the particle is nonzero, P_{car}≠0. In this case we have an apparent contradiction that there is a source of the electric dipole response, but no contribution to the farfield. Similarly, an opposite situation exists for the diameter around 196 nm, when the induced electric dipole moments inside the particle vanishes, P_{car}=0, while there is a nonzero contribution to the farfield P_{sph}≠0. In this case, we have a finite contribution to the farfield in the absence of a source! To resolve such contradictions, we note that for larger diameters, the electric field distribution inside the particle becomes highly inhomogeneous; simple averaging of the induced current (proportional to the electric field) is not enough to properly describe the contribution to the farfield. As was mentioned above, in general, the scattering coefficients can be expressed through Cartesian multipole coefficients . The relation between current Cartesian and field spherical multipoles for the electric dipole coefficient a_{E} can be written as ref. 32
where C_{1}=−ik^{3}/(6πɛ_{0}E_{0}) and C_{3}=−ik^{5}/(210πɛ_{0}E_{0}) (ref. 30). We notice, that among these higher order current Cartesian coefficients there are toroidal dipole moments with a radiation pattern similar to the electric dipole (see, for example, Supplementary Information in ref. 33). It implies that it now should be taken into account to correctly describe the scattering properties. The toroidal dipole moment can be calculated via induced current as
and the total contribution to the farfield scattering can now be written as (see Supplementary Methods)
Thus, the farfield radiation vanishes, E_{sca}=0, when the contributions of the current Cartesian electric and toroidal dipoles to the scattered field are outofphase
and, thus, interfere destructively with each other. This is the exact condition for excitation of the radiationless anapole mode.
In Fig. 2c we also show the dependence of the toroidal dipole contribution to the farfield, which becomes essential for larger sized particles. In particular, when the induced electric dipole moment vanishes, P_{car}=0, only the toroidal dipole contributes to the farfield scattering. Alternatively, the scattering cancellation is possible, P_{sph}=0, when nonzero electric and toroidal dipoles contributions compensate each other in the farfield. Thus, the partial scattering can vanish meaning that the electric dipole scattering coefficient becomes zero, a_{E}(1,±1)≈0, which can be achieved when the firstorder (electric dipole) coefficients have to be compensated by the toroidal part of the thirdorder coefficients . This simple consideration creates the basis for understanding of physics of the anapole mode, namely, mutual compensation of lower and part of the higher order components with a nontrivial current distribution inside the particle.
All of this raises an important question: is it possible to experimentally observe the anapole mode? By using external sources it is not possible to achieve total zero scattering due to Lorentz reciprocity. But, can we get around this condition with realistic structures? The spherical geometry under planewave illumination is not suitable, since in the vicinity of the anapole excitation other multipoles will produce strong contributions to the total scattering due to superposition. For successful experimental observation of the anapole we need to find a structure, which exhibits leading contribution of solely the electric dipole with all other modes being strongly suppressed. One of the possibilities to achieve this is to use a disk geometry with a particular aspect ratio. Specifically, we found that a silicon nanodisk of height 50 nm and diameter ranging from 200 to 400 nm supports the anapole mode, which can be experimentally excited and observed (see Fig. 3). For this geometry, calculations are made in CST Microwave Studio show a strong dip in the farfield scattering spectrum (see Fig. 3b), accompanied by a nearfield enhancement inside and around the disk (see Fig. 3a), indicating the presence of the combination of electric and toroidal dipoles which provide the anapole mode configuration. Opposite circular displacement currents in the left and right hand sides of the disk (see Fig. 3c) generate a circular magnetic moment distribution that is perpendicular to the disk surface (see Fig. 3d). This provides a strong toroidal moment oriented parallel to the disk surface.
Excitation of this toroidal dipole and its destructive interference with the electric dipole is confirmed through current Cartesian and field spherical multipole decompositions (see the 310nm diameter disk in Fig. 3e,f). One advantage of such disks compared with other geometries, for example, spheres, is that the other multipoles apart from the electric and toroidal dipoles are suppressed (see also Supplementary Fig. 1 for a silicon disk with diameter of 200 nm). We clearly observe a strong suppression of the total scattering due to the farfield cancelation of electric and toroidal dipole radiations (see Fig. 3f), which is exactly the condition for anapole mode excitation. Since we are exciting the silicon disk with an incident plane wave, the total scattering cannot completely vanish due to reciprocity. Instead, magnetic quadrupole radiation is dominant in the farfield (see Fig. 3e). At the same time, the nearfield distribution is quite complex and does not correspond to a magnetic quadrupole only. The multipole expansion of current distribution inside the silicon nanodisks (see Supplementary Methods) indicates dominant contributions of electric and toroidal dipole moments (see Fig. 3f). The presence of magnetic quadrupole in disk geometry can be also understood from the structure of the toroidal dipole moment, schematically presented in Fig. 1. In particular, for an ideal spherical geometry, a toroidal dipole is characterized by the presence of the circulating magnetic flux along the closed loop. By transforming a sphere to a disk, this loop discontinues and leads to the formation of two antiparallel magnetic moments, resulting in magnetic quadrupole radiation, which does not affect the condition of the anapole mode excitation. Our direct numerical results indicate that the anapole excitation in silicon disks is robust against incident angle and polarization (see also Supplementary Fig. 2).
To confirm these theoretical predictions, we performed a series of experiments to observe the anapole excitation. Silicon nanodisks with a height of 50 nm and diameters ranging from 160 to 310 nm were fabricated on a quartz substrate using standard nanofabrication techniques (see Methods). Farfield scattering spectra (Fig. 4a) were measured using single nanoparticle darkfield spectroscopy (see Methods). For disks with a diameter >200 nm, a scattering dip appears around 550 nm; as the diameter increases, the dip redshifts and becomes more pronounced. The spectral position of this farfield scattering minimum is in good agreement with the theoretically predicted anapole excitation (see Fig. 3b for comparison). To show that the spectral dip in farfield scattering corresponds to the dark anapole mode excitation, the nearfield distribution around the disks is mapped at multiple wavelengths using a nearfield scanning optical microscope (NSOM) and a supercontinuum light source (see Methods). The observed deviation from the theoretically predicted suppression is primarily attributed to the nonperfect disk shape and inevitable roughness. Representative experimental nearfield maps for the 310nm diameter disk at wavelengths around the anapole excitation are provided in Fig. 4b, compared directly with simulated nearfield maps of transverse electric and magnetic field at a height of 10 nm above the nanodisk. The numerical simulations were performed by using CST Microwave Studio for a bar silicon nanodisk and the nearfield was collected above the nanoparticle for linear polarized planewave excitation coming from the bottom. In the simulations we did not take the presence of the probe into account. It is known, that the signal collected by an aperturetype nearfield probe is not directly proportional to any of the nearfield components separately but is a result of a convolution integral of both electric and magnetic nearfields (see for example, ref. 36). Thus, it should reflect nearfield maxima of both electric and magnetic field components. For this reason in Fig. 4 we compare simulated electric and magnetic nearfields with the experimental NSOM data. The experimental nearfield maps show the evolution of the spectral response throughout the visible. As the wavelength approaches 620 nm, we begin to see the splitting of the central hotspot into two separate spots. Close to the anapole mode wavelength, at 640 nm a new hotspot appears in the middle of the disk and its intensity increases with wavelength. Experimental results clearly show the appearance of a nearfield maximum at the anapole wavelength in the middle of the disk, which corresponds to appearance of the maximum of electric nearfield in simulations. The experimental results also show particular symmetry of the nearfield excitation with main lobes aligned perpendicular to polarization direction. This is also in a good correlation with both electric and magnetic nearfield components in the simulations. Similar nearfield behaviour with an anapole excitation at 620 nm is observed for a disk with diameter of 285 nm (see Supplementary Fig. 3).
In summary, the anapole mode observed in the silicon nanodisk originates from the interference of two different dipole moments. Such radiationless excitation can make the nanodisk almost invisible in the farfield at the anapole’s excitation wavelength. The anapole mode offers a new way to achieve an invisibility condition for lossless dielectric nanostructures based on the cancellation of radiation scattering (originally proposed by Kerker in (ref. 37) for metallic coreshell nanoparticles). Moreover, the relation between the electric and toroidal dipoles, including their mutual cancelation in the farfield can be directly extended to magnetic moments, when the magnetic dipole radiation vanishes. Recent observations of a strong magnetic dipole response from silicon nanoparticles^{38,39,40} suggests that it could be an ideal platform for the demonstration of such magnetic type anapoles.
We also mention that the anapole mode is not only limited to disk geometries but can also be observed for spheres^{38} or other dielectric nanostructures where the electric dipole contribution vanishes due to excitation of other modes with electric dipole symmetry in the farfield. For other geometries, however, this effect can be hidden by contributions of higherorder multipole modes (quadrupoles, octupoles and so on). Similar effects can also be expected in metallic systems supporting ‘higherorder dipole’ modes.
Methods
Fabrication
Silicon nanodisks with various diameters were fabricated on quartz substrates by standard nanofabrication techniques. A 50nm silicon film was grown on a quartz substrate using chemical vapor deposition (ICPCVD, Oxford Instruments). A thin (<60 nm) layer of negative resist (HSQ) was coated on the sample. Lithography was performed with an electron beam lithography machine (Elionix 100 KV). After electron beam exposure and development, reactive ion etching (ICP, Oxford Instruments) was used to transfer the pattern into the silicon film. The result is silicon disks with a thin (<10 nm) cap of residual resist on top of a quartz substrate.
Farfield spectroscopy
Spectral analysis was performed using a singlenanoparticle spectroscopy setup with a darkfield geometry (see ref. 40 for details). The sample was irradiated by a halogen lamp source at an angle of 58.5°. According to our simulations the spectral position of the anapole excitation practically does not change for variations of the incidence angle in the range from 0° to 60° (see Supplementary Fig. S3). Scattered light is collected from above into a solid angle corresponding to the microscope objective lens with 0.55 numerical aperature. The collected scattering spectra were normalized to the halogen lamp spectrum measured in a brightfield reflection geometry.
Nearfield
The sample was characterized in the nearfield using a NSOM (Multiprobe SPM/NSOM Cryoview, Nanonics Imaging). The sample was illuminated from the farfield and the nearfield was collected through a subwavelength aperture (50nm aperture of a tapered fibre, coated with Chrome and Gold) in a transmission configuration. The light source used is a supercontinuum source (SuperK Power, NKT Photonics). Specific wavelengths were selected using a variable bandpass filter (SuperK Varia, NKT Photonics). Photons were counted with Avalanche Photo Diodes (Excelitas Technologies). Scans on individual particles were performed with various wavelengths over a 2 × 2 μm area with a pixel size of 8 nm. The nearfield maps are normalized, taking the background as unity.
Additional information
How to cite this article: Miroshnichenko, A. E. et al. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun. 6:8069 doi: 10.1038/ncomms9069 (2015).
Change history
27 August 2015
The Supplementary Information of this paper was updated shortly after publication to correct Supplementary Equation (9) with a missing c factor for the toroidal dipole contribution; the PDF version of the paper was correct from the time of publication.
References
 1
Ehrenfest, P. Ungleichförmige Elektrizitätsbewegungen ohne Magnet und Strahlungsfeld. Phys. Z 11, 708–709 (1910) .
 2
Schott, G. A. The electromagnetic field of a moving uniformly and rigidly electrified sphere and its radiationless orbits. Philos. Mag. 7, 752–761 (1933) .
 3
Goedecke, G. H. Classically radiationless motions and possible implications for quantum theory. Phys. Rev. 135, B281–B288 (1964) .
 4
Zel'dovich, Y. a. B. Electromagnetic interaction with parity violation. Zh. Eksp. Teor. Fiz 33, 1531 (1957) [JETP 6, 1184 (1957)] .
 5
Ho, C. M. & Scherrer, R. J. Anapole dark matter. Physics Lett. B. 722, 341–346 (2013) .
 6
Afanasiev, G. N. & Stepanovsky, Y. u. P. The electromagnetic field of elementary timedependent toroidal sources. J. Phys. A: Math. Gen. 8, 4565 (1995) .
 7
Fedotov, V. A., Rogacheva, V., Savinov, V., Tsai, D. & Zheludev, N. I. Resonant transparency and nontrivial nonradiating excitations in toroidal metamaterials. Scientific Reps 3, 2967 (2013) .
 8
Basharin, A. A. et al. Dielectric Metamaterials with Toroidal Dipolar Response. Phys. Rev. X 5, 011036 (2015) .
 9
Afanasiev, G. Simplest source of electromagnetic fields as a tool for testing the reciprocitylike theorems. J. Phys. D: Appl. Phys. 34, 539 (2001) .
 10
Afanasiev, G. Vector solutions of the Laplace equation and the influence of helicity on AharonovBohm scattering. J. Phys. A: Math. Gen. 27, 2143 (1994) .
 11
Dubovik, V., Tosunyan, L. & Tugushev, V. Axial toroidal moments in electrodynamics and solidstate physics. Zh. Eksp. Teor. Fiz. 90, 590 (1986) .
 12
Kopaev, Y. u. V. ‘Toroidal ordering in crystals’. PhysUsp 52, 1111–1125 (2009) .
 13
Kaelberer, T., Fedotov, V. A., Papasimakis, N., Tsai, D. P. & Zheludev, N. I. Toroidal dipolar response in metamaterials. Science 330, 1510 (2010) .
 14
Wood, C. S. et al. Measurement of Parity Nonconservation and an Anapole Moment in Cesium. Science 275, 1759–1763 (1997) .
 15
Flambaum, V. V. & Khriplovich, I. B. Podd nuclear forces as a source of parity nonconservation in atoms. Zh. Eksp. Teor. Fiz 79, 1656 (1980) [JETP 52, 835 (1980)] .
 16
Stadnik, Y. V. & Flambaum, V. V. Axioninduced effects in atoms, molecules, and nuclei: Parity nonconservation, anapole moments, electric dipole moments, and spingravity and spinaxion momentum couplings. Phys. Rev. D 89, 043522 (2014) .
 17
Roberts, B. M. et al. Parityviolating interactions of cosmic fields with atoms, molecules, and nuclei: Concepts and calculations for laboratory searches and extracting limits. Phys. Rev. D 90, 096005 (2014) .
 18
Devaney, A. J. & Wolf, E. Radiating and nonradiating classical current distributions and the fields they generate. Phys. Rev. D 8, 1044 (1973) .
 19
Kim, K. & Wolf, E. Nonradiating monochromatic sources and their fields. Opt. Commun. 59, 1 (1986) .
 20
Wolf, E. & Habashy, T. Invisible bodies and uniqueness of the inverse scattering problem. J. Mod. Opt. 40, 785 (1993) .
 21
Marinov, K., Boardman, A. D., Fedotov, V. A. & Zheludev, N. Toroidal metamaterial. New J. Phys. 9, 324 (2007) .
 22
Huang, Y. W. et al. Design of plasmonic toroidal metamaterials at optical frequencies. Opt. Express 20, 1760–1768 (2012) .
 23
Huang, Y. W. et al. Toroidal lasing spaser. Scientific Rep.s 3, 1237 (2013) .
 24
Dong, Z. G., Zhu, J., Yin, X., Li, J. & Lu, C. Alloptical Hall effect by the dynamic toroidal moment in a cavitybased metamaterial. Phys. Rev. B 87, 245429 (2013) .
 25
Savinov, V., Fedotov, V. A. & Zheludev, N. I. Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials. Phsy. Rev. B 89, 205112 (2014) .
 26
Dubovik, V. & Tugushev, V. Toroid moments in electrodynamics and solidstate physics. Phys. Rep. 187, 4 145 (1990) .
 27
Kafesaki, M., Basharin, A. A., Economou, E. N. & Soukoulis, C. M. THz metamaterials made of phononpolariton materials. Photonics and Nanostructures 12, 376–386 (2014) .
 28
Radescu, E. E. & Vaman, G. Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles. Phys. Rev. E 65, 046609 (2002) .
 29
Gongora, T. A. & LeyKoo, E. Complete electromagnetic multipole expansion including toroidal moments. Rev. Mex. Fis. E 52, 188–197 (2006) .
 30
Ögüt, B., Talebi, N., Vogelgesang, R., Sigle, W. & van Aken, P. A. Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible. Nano Lett. 12, 5239 (2012) .
 31
Morse, F. M. & Feshbach, H. Methods of theoretical physics McGrawHill (1953) .
 32
Grahn, P., Savchenko, A. & Kaivola, M. Electromagnetic multipole theory for optical nanomaterials. New. J. Phys. 14, 093033 (2012) .
 33
Chen, J., Lin, J., Ng, Z. & Chan, C. T. Optical pulling force. Nat. Photonics 5, 531–534 (2011) .
 34
Evlyukhin, A. B., Reinhardt, C. & Chichkov, B. N. Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation. Phys. Rev. B 84, 235429 (2011) .
 35
Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles WILEYVCH Verlag (1998) .
 36
le Feber, B., Rotenberg, N., Beggs, D. M. & Kuipers, L. Simultaneous measurement of nanoscale electric and magnetic optical fields. Nat. Photonics 8, 43–46 (2014) .
 37
Kerker, M. Invisible bodies. J. Opt. Soc. AmB 65, 376–379 (1975) .
 38
Kuznetsov, A. I., Miroshnichenko, A. E., Fu, Y. H., Zhang, J. B. & Luk’yanchuk, B. Magnetic Light. Sci. Rep. 2, 492 (2012) .
 39
Evlyukhin, A. B. et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 12, 3749–3755 (2012) .
 40
Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F. & Luk’yanchuk, B. Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4, 1527 (2013) .
Acknowledgements
We thank N. Zheludev and M. Berry for useful discussions, and their great interest to this work. The work of A.E.M. was supported by the Australian Research Council via Future Fellowship program (FT110100037). The authors at DSI were supported by DSI core funds. Fabrication, Scanning Electron Microscope Imaging and NSOM works were carried out in facilities provided by SnFPC@DSI (SERC Grant 092 160 0139). Zhen Ying Pan (DSI) is acknowledged for SEM imaging. Yi Zhou (DSI) is acknowledged for silicon film growth. Leonard Gonzaga (DSI), Yeow Teck Toh (DSI) and Doris Ng (DSI) are acknowledged for development of the silicon nanofabrication procedure. B.N.C. acknowledges support from the Government of Russian Federation, Megagrant No. 14.B25.31.0019.
Author information
Affiliations
Contributions
A.E.M., A.B.E. and A.C. developed the original concept and theoretical description. Y.F.Y., R.M.B. and A.I.K. designed experiments and performed nanofabrication and optical near and farfield measurements. All authors contributed to the writing of the manuscript. A.E.M. supervised the project, analysed the data and coordinated the manuscript preparation.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Figures 13, Supplementary Methods, Supplementary References. (PDF 8596 kb)
Rights and permissions
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
About this article
Cite this article
Miroshnichenko, A., Evlyukhin, A., Yu, Y. et al. Nonradiating anapole modes in dielectric nanoparticles. Nat Commun 6, 8069 (2015). https://doi.org/10.1038/ncomms9069
Received:
Accepted:
Published:
Further reading

Momentum space toroidal moment in a photonic metamaterial
Nature Communications (2021)

Radiationless anapole states in onchip photonics
Light: Science & Applications (2021)

Dual polarized engineering the extinction crosssection of a dielectric wire using graphenebased oligomers
Scientific Reports (2021)

Frontiers of light manipulation in natural, metallic, and dielectric nanostructures
La Rivista del Nuovo Cimento (2021)

Mantle cloaking due to ideal magnetic dipole scattering
Scientific Reports (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.